Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 46: 55-64, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223246

ABSTRACT

BACKGROUND: Ethanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥10%, v/v), QP, (≥2.5 g/L·h) and SC (≥90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied. RESULTS: The initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180­200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different. CONCLUSION: Initial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.


Subject(s)
Saccharomyces cerevisiae/metabolism , Sorghum/chemistry , Ethanol/metabolism , Saccharomyces cerevisiae/growth & development , Urea , Yeasts/growth & development , Aeration , Sorghum/microbiology , Ethanol/analysis , Sugars , Juices , Fermentation , Gravitation , Nitrogen
2.
Electron. j. biotechnol ; 26: 84-92, Mar. 2017. graf, tab
Article in English | LILACS | ID: biblio-1008992

ABSTRACT

Background: Fermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01. Results: In the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h. Conclusions: In the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.


Subject(s)
Sorghum/metabolism , Ethanol/metabolism , Biofuels , Fermentation , Saccharomyces cerevisiae/metabolism , Dietary Supplements , Sorghum/chemistry , Batch Cell Culture Techniques , Gravitation , Nitrogen
3.
Electron. j. biotechnol ; 14(6): 3-3, Nov. 2011. ilus, tab
Article in English | LILACS | ID: lil-640520

ABSTRACT

Dried spent yeast (DSY) was used as a low-cost nitrogen supplement for ethanol fermentation from sweet sorghum juice under very high gravity (VHG) conditions by Saccharomyces cerevisiae NP 01. The fermentation was carried out at 30ºC in a 5-litre bioreactor. The results showed that DSY promoted ethanol production efficiencies. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) of the sterile juice (total sugar of 280 g l-1) supplemented with 8 g l-1 of DSY were not different from those supplemented with yeast extract and/or peptone at the same amount. The initial yeast cell concentration of 5 x 10(7) cells ml-1 was found to be optimal for scale-up ethanol production. In addition, an increase in sugar concentration in inoculum preparation medium (from 10 to 100 g l-1) improved the ability of the inoculum to produce ethanol under the VHG conditions. When S. cerevisiae NP 01 grown in the juice containing 100 g l-1 of total sugar was used as the inoculum for ethanol fermentation, the P, Qp and Yp/s obtained were 108.98 +/- 1.16 g l-1, 2.27 +/- 0.06 g l-1 h-1 and 0.47 +/- 0.01 g g-1, respectively. Similar results were also observed when the ethanol fermentation was scaled up to a 50-litre bioreactor under the same conditions. The cost of the sweet sorghum for ethanol production was US$ 0.63 per litre of ethanol. These results clearly indicate the high potential of using sweet sorghum juice supplemented with DSY under VHG fermentation for ethanol production in industrial applications.


Subject(s)
Ethanol/metabolism , Fermentation , Hypergravity , Nitrogen , Saccharomyces cerevisiae/physiology , Sorghum/metabolism , Yeasts
4.
Electron. j. biotechnol ; 14(1): 4-5, Jan. 2011. ilus, tab
Article in English | LILACS | ID: lil-591922

ABSTRACT

Batch ethanol fermentations from sweet sorghum juice by Saccharomyces cerevisiae NP 01 were carried out in a 500 ml air-locked Erlenmeyer flask under very high gravity (VHG) and static conditions. The maximum ethanol production efficiency was obtained when 9 g l-1 of yeast extract was supplemented to the juice. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) were 120.24 +/- 1.35 g l-1, 3.01 +/- 0.08 g l-1 h-1 and 0.49 +/- 0.01, respectively. Scale up ethanol fermentation in a 5-litre bioreactor at an agitation rate of 100 rev min-1 revealed that P, Qp and Yp/s were 139.51 +/- 0.11 g l-1, 3.49 +/- 0.00 g l-1 h-1 and 0.49 +/- 0.01, respectively, whereas lower P (119.53 +/- 0.20 g l-1) and Qp (2.13 +/- 0.01 g l-1 h-1) were obtained in a 50-litre bioreactor. In the repeated-batch fermentation in the 5-litre bioreactor with fill and drain volume of 50 percent of the working volume, lower P and Qp were observed in the subsequent batches. P in batch 2 to 8 ranged from 103.37 +/- 0.28 to 109.53 +/- 1.06 g l-1.


Subject(s)
Ethanol/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/metabolism , Fermentation , Fermentation/physiology , Plant Preparations/metabolism
5.
Electron. j. biotechnol ; 9(4)July 2006. ilus, tab, graf
Article in English | LILACS | ID: lil-451656

ABSTRACT

The effect of glutaraldehyde, a commercial biocide widely used in paper and pulp industry, on the performance of laboratory-scale rotating biological contactors (RBCs) as well as biocide efficacy was studied. Biofilms were established on the RBCs and then exposed to 0 - 180 ppm glutaraldehyde at a dilution rate of 1.60 h-1. The results showed that the biofilms became acclimated to glutaraldehyde and eventually could degrade it. Acclimation to the biocide took longer at the higher biocide concentrations. The degree of biocide degradation and chemical oxygen demand (COD) removal depended on acclimation period, the presence of other organic matters and the amount of mineral salts available. Glutaraldehyde at up to 80 ppm had no effect on treatment efficiency and populations of biofilms and planktonic phase of the system whereas glutaraldehyde at 180 ppm caused a progressive decline in all measured values. However, no glutaraldehyde concentration used in the study was sufficiently high to kill microorganisms in the RBC system. The presence of biofilm provided additional resistance to glutaraldehyde to bacteria because the biocide had to penetrate through biofilm to reach bacteria. The increased resistance of bacteria to glutaraldehyde due to acclimation should be considered in biocide applications.

SELECTION OF CITATIONS
SEARCH DETAIL